jump to navigation

The 600 Home Run Almanac July 28, 2010

Posted by tomflesher in Baseball, Economics.
Tags: , , , , , , , , , , , , , ,
2 comments

People are interested in players who hit 600 home runs, at least judging by the Google searches that point people here. With that in mind, let’s take a look at some quick facts about the 600th home run and the people who have hit it.

Age: There are six players to have hit #600. Sammy Sosa was the oldest at 39 years old in 2007. Ken Griffey, Jr. was 38 in 2007, as were Willie Mays in 1969 and Barry Bonds in 2002. Hank Aaron was 37. Babe Ruth was the youngest at 36 in 1931. Alex Rodriguez, who is 35 as of July 27, will almost certainly be the youngest player to reach 600 home runs. If both Manny Ramirez and Jim Thome hang on to hit #600 over the next two to three seasons, Thome (who was born in August of 1970) will probably be 42 in 2012; Ramirez (born in May of 1972) will be 41 in 2013. (In an earlier post that’s when I estimated each player would hit #600.) If Thome holds on, then, he’ll be the oldest player to hit his 600th home run.

Productivity: Since 2000 (which encompasses Rodriguez, Ramirez, and Thome in their primes), the average league rate of home runs per plate appearances has been about .028. That is, a home run was hit in about 2.8% of plate appearances. Over the same time period, Rodriguez’ rate was .064 – more than double the league average. Ramirez hit .059 – again, over double the league rate. Thome, for his part, hit at a rate of .065 home runs per plate appearance. From 2000 to 2009, Thome was more productive than Rodriguez.

Standing Out: Obviously it’s unusual for them to be that far above the curve. There were 1,877,363 plate appearances (trials) from 2000 to 2009. The margin of error for a proportion like the rate of home runs per plate appearance is

\sqrt{\frac{p(1-p)}{n-1}} = \sqrt{\frac{.028(.972)}{1,877,362}} = \sqrt{\frac{.027}{1,877,362}} \approx \sqrt{\frac{14}{1,000,000,000}} = .00012

Ordinarily, we expect a random individual chosen from the population to land within the space of p \pm 1.96 \times MoE 95% of the time. That means our interval is

.027 \pm .00024

That means that all three of the players are well without that confidence interval. (However, it’s likely that home run hitting is highly correlated with other factors that make this test less useful than it is in other situations.)

Alex’s Drought: Finally, just how likely is it that Alex Rodriguez will go this long without a home run? He hit his last home run in his fourth plate appearance on July 22. He had a fifth plate appearance in which he doubled. Since then, he’s played in five games totalling 22 plate appearances, so he’s gone 23 plate appearances without a home run. Assuming his rate of .064 home runs per plate appearance, how likely is that? We’d expect (.064*23) = about 1.5 home runs in that time, but how unlikely is this drought?

The binomial distribution is used to model strings of successes and failures in tests where we can say clearly whether each trial ended in a “yes” or “no.” We don’t need to break out that tool here, though – if the probability of a home run is .064, the probability of anything else is .936. The likelihood of a string of 23 non-home runs is

.936^{23} = .218

It’s only about 22% likely that this drought happened only by chance. The better guess is that, as Rodriguez has said, he’s distracted by the switching to marked baseballs and media pressure to finally hit #600.

Back when it was hard to hit 55… July 8, 2010

Posted by tomflesher in Baseball, Economics.
Tags: , , , , , , , , ,
add a comment

Last night was one of those classic Keith Hernandez moments where he started talking and then stopped abruptly, which I always like to assume is because the guys in the truck are telling him to shut the hell up. He was talking about Willie Mays for some reason, and said that Mays hit 55 home runs “back when it was hard to hit 55.” Keith coyly said that, while it was easy for a while, it was “getting hard again,” at which point he abruptly stopped talking.

Keith’s unusual candor about drug use and Mays’ career best of 52 home runs aside, this pinged my “Stuff Keith Hernandez Says” meter. After accounting for any time trend and other factors that might explain home run hitting, is there an upward trend? If so, is there a pattern to the remaining home runs?

The first step is to examine the data to see if there appears to be any trend. Just looking at it, there appears to be a messy U shape with a minimum around t=20, which indicates a quadratic trend. That means I want to include a term for time and a term for time squared.

Using the per-game averages for home runs from 1955 to 2009, I detrended the data using t=1 in 1955. I also had to correct for the effect of the designated hitter. That gives us an equation of the form

\hat{HR} = \hat{\beta_{0}} + \hat{\beta_{1}}t + \hat{\beta_{2}} t^{2} + \hat{\beta_{3}} DH

The results:

Estimate Std. Error t-value p-value Signif
B0 0.957 0.0328 29.189 0.0001 0.9999
t -0.0188 0.0028 -6.738 0.0001 0.9999
tsq 0.0004 0.00005 8.599 0.0001 0.9999
DH 0.0911 0.0246 3.706 0.0003 0.9997

We can see that there’s an upward quadratic trend in predicted home runs that together with the DH rule account for about 56% of the variation in the number of home runs per game in a season (R^2 = .5618). The Breusch-Pagan test has a p-value of .1610, indicating a possibility of mild homoskedasticity but nothing we should get concerned about.

Then, I needed to look at the difference between the predicted number of home runs per game and the actual number of home runs per game, which is accessible by subtracting

Residual = HR - \hat{HR}

This represents the “abnormal” number of home runs per year. The question then becomes, “Is there a pattern to the number of abnormal home runs?”  There are two ways to answer this. The first way is to look at the abnormal home runs. Up until about t=40 (the mid-1990s), the abnormal home runs are pretty much scattershot above and below 0. However, at t=40, the residual jumps up for both leagues and then begins a downward trend. It’s not clear what the cause of this is, but the knee-jerk reaction is that there might be a drug use effect. On the other hand, there are a couple of other explanations.

The most obvious is a boring old expansion effect. In 1993, the National League added two teams (the Marlins and the Rockies), and in 1998 each league added a team (the AL’s Rays and the NL’s Diamondbacks). Talent pool dilution has shown up in our discussion of hit batsmen, and I believe that it can be a real effect. It would be mitigated over time, however, by the establishment and development of farm systems, in particular strong systems like the one that’s producing good, cheap talent for the Rays.